GCSE
 MATHEMATICS
 8300/1H

Higher Tier
Paper 1 Non-Calculator
Shadow paper based on June 2023 paper
Mark scheme
June 2023
Version: 1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
$[\mathrm{a}, \mathrm{b}) \quad$ Accept values $\mathrm{a} \leqslant$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments	
1(c)	80	B1		
	Additional Guidance			
	Mark the answer line. If this is blank, mark the working			
	If values are given in on working with nothing on eg1 $\frac{160}{2}=80$ on ans eg2 $\frac{160}{2}$ and $79 \frac{1}{2}$ in	s, eith , all va wer lin	ne or in ect	B1 B0
	Do not allow unproces eg $\frac{160}{2}$			B0

Q	Answer	Mark	Comments
$\mathbf{2} \mathbf{2}$	$x<12$ or $12>x$	B1	
	Additional Guidance		B1
	$x=12$ in working with $x<12$ on answer line	B0	
	$x<12$ and $(x=) 12$ on answer line	B0	
	$x<12$ in working with $x=12$ or 12 on answer line		
	lgnore number lines drawn		

Q		Answer	Mark	Comments	
3	2	$\frac{7}{9}$	B1	oe mixed number	
	Additional Guidance				
		$\begin{aligned} & \frac{25}{9}=2 \frac{7}{9} \text { or } 2.77 \ldots=2 \\ & 2 \frac{7}{9}=\frac{25}{9} \text { or } 2 \frac{7}{9}=2.77 \end{aligned}$			B1 B0
		Otherwise, $2 \frac{7}{9}$ and order (or in working with	$\text { d } 2.77$ ank an	on answer line in either nswer unclear)	B0
		$1 \frac{16}{9}$			B0
		$2\left(\frac{7}{9}\right)$ or $2+\frac{7}{9}$			B0

Q	Answer	Mark	Comments	
5	All conditions met: - first number is prime - second number is prime - correctly evaluated - even answer - answer in range	B3	if their product is incorrectly evaluated or missing, then 'even answer' and 'answer in range' refer to the correct product for their multiplication B2 4 conditions met B1 3 conditions met	
	Additional Guidance			
	$2 \times 23=46$ (or $23 \times 2=46$) is	ly fully	rect solution	B3
	Allow 40 to 50 inclusive for 'ans	range'		
	Award the best mark from boxes	working	or up to B2	
	The two prime numbers do not have to be different			

Q	Answer	Mark	Comments
6	$\frac{3}{4} \times 72$ or 54	M1	oe eg $72 \div 4 \times 3$ implied by 126
	$\frac{1}{6} \times$ their 54 or 9	M1dep	oe eg $54 \div 6$ accept 0.16 or better for $\frac{1}{6}$
	$\frac{4}{9} \times 72 \text { or } 32$	M1	oe eg $72 \div 9 \times 4$ accept 0.44 or better for $\frac{4}{9}$
	41(.00)	A1	SC2 [54.65,54.67] or 36 condone incorrect money n eg 41.0 or 41.00 p
	Additional Guidance		
	SC2 for [$54.65,54.67]$ is from misreading as Chloe gets $£ 72$		
	SC2 for 36 is from $\frac{4}{9}$ of 54 plus $\frac{1}{6}$ of 72		
	Do not accept ' $\frac{3}{4}$ of 72 ' or ' $\frac{1}{6}$ of 54 ' or ' $\frac{4}{9}$ of 72 ' for M marks unless accompanied by a correct method or value		

Q	Answer	Mark	Comments	
	Alternative method 1 - evaluation and division			
	$\begin{aligned} & \left(3^{2}=\right) 9 \text { or }\left(5 \times 3^{2}=\right) 45 \\ & \text { or } \\ & 360 \div 5 \text { or } 72 \\ & \text { or } \\ & 360 \div 3^{2} \text { or } 40 \end{aligned}$	M1	oe oe eg $5 \times 72=360$ oe eg $9 \times 40=360$	
	$360 \div 5 \div 3^{2}$ or 8	M1dep	oe eg $8 \times 45=360$	
	3 with M1 awarded and not from incorrect working	A1		
	Alternative method 2 - product of prime factors			
7	360 written as a product of factors where at least one factor is prime	M1	eg 2 and 180 or 3 and 120 or 2 and 2 and 90 may be seen on a factor tree or in repeated division allow one strand to be incorrect if a previous value completes the product eg 10×36 followed by $2 \times 5 \times 6 \times 8$ implies $2 \times 5 \times 36$ for M1	
	2 and 2 and 2 and 3 and 3 and 5	M1dep	may be seen on a factor tree or in repeated division	
	3 with M1 awarded and not from incorrect working	A1		
	Additional Guidance			
	$8 \times 9 \times 5=360$ and answer 3			M1M1A1
	2^{3} on answer line with M2 awarded			M1M1A0
	Answer 3 on answer line with no working			MOMOAO
	Do not allow $360 \div 5 \times 3^{2}$ for M2 in alt 1 unless recovered, but do allow $\frac{360}{5 \times 3^{2}}$ or $360 \div\left(5 \times 3^{2}\right)$			

Q	Answer	Mark	Comments	
8	$7 x+18$	B2	B1 $10 x+12$ or $-3 x$ or $7 x+a$ or $b x+18$ can be any numbers	and b
	Additional Guidance			
	Do not ignore further working for B2 eg $7 x+18=25 x$ eg $7 x+18, x=\frac{18}{7}$			B1 B1

Q	Answer	Mark	Comments	
9	Any two from: Reference to graph passing through point where $x=0$ Reference to graph being incorrect for negative x values Reference to the graph stopping before the end of the axes/axis	B2	B1 any one correct reference eg the graph touches the y-axis eg the graph to the left of the y-axis should be below the x-axis eg the graph should go to the ends of the axes	
	Additional Guidance			
	Ignore non-contradictory, irrelevant responses alongside a correct response			
	Draws correct graph			B2
	Draws graph with one section correct for positive values of x or negative values of x			B1 for that section
	'It isn't the graph of $y=\frac{1}{x}$ ' scores B0, but B1 may still be scored for the other criticism			
	'There are no numbers on the axes' scores B0, but B1 may still be scored for the other criticism			
	Mark for graph touching y-axis			
	You cannot have $x=0$			B1
	The line in the top right should be moved to the right			B1
	It says x doesn't $=0$ but it (the sketch) does			B1
	One line is touching the y-axis			B1
	The lines should be symmetrical			B0
	You cannot have $y=0$			B0
	One line is touching the y-axis but the other isn't			B0

Question 9 Additional Guidance continues on the next page

$\begin{gathered} 9 \\ \text { cont } \end{gathered}$	Mark for negative values being in the wrong quadrant	
	There shouldn't be anything in the top-left section	B1
	There should be something in the bottom-left section	B1
	It is the graph of $y=\frac{1}{x^{2}}$	B1
	It should have rotational symmetry	B1
	It should be symmetrical about $y=x$	B1
	It should be symmetrical about $y=-x$	B1
	It should be symmetrical	B0
	One should be negative	B0
	The bit on the left is wrong	B0
	The negative values are plotted incorrectly	B0
	Reference to the graph stopping before the end of the axes	
	It stops before the end of the axes	B1
	The lines don't go far enough	B1
	The lines need to be higher up	B0

Q	Answer	Mark	Comments
10	Alternative method 1 - algebra based on Wenjie's age		
	35×3 or 105	M1	may be implied by their algebraic total of the three ages being divided by 3
	$x+5 \text { or } 3 x$ or $5 x+5$	M1	oe expressions any letter throughout
	$\begin{aligned} & x+\text { their }(x+5)+\text { their } 3 x=\text { their } 105 \\ & \text { or } 5 x+5=\text { their } 105 \end{aligned}$	M1dep	oe equation eg $\frac{x+x+5+3 x}{3}=35$ dep on M1M1
	$(x=) 20$	M1dep	correct solution to their equation if the solution has a decimal part allow truncation or rounding to the nearest whole number
	60	A1	
	Alternative method 2 - algebra based on Conor's age		
	35×3 or 105	M1	may be implied by their algebraic total of the three ages being divided by 3
	$\begin{aligned} & \frac{y}{3} \text { or } \frac{y}{3}+5 \\ & \text { or } \frac{5 y}{3}+5 \end{aligned}$	M1	oe expressions any letter throughout
	$\begin{aligned} & y+\text { their } \frac{y}{3}+\text { their }\left(\frac{y}{3}+5\right)=\text { their } \\ & 105 \end{aligned}$	M1dep	oe equation eg $\frac{y+\frac{y}{3}+\frac{y}{3}+5}{3}=35$ dep on M1M1
	$\begin{aligned} & 3 y+\text { their } y+\text { their }(y+15)=3 \times \\ & \text { their } 105 \\ & \text { or } 5 y+15=315 \\ & \text { or } 5 y=300 \end{aligned}$	M1dep	their equation with no denominator
	60	A1	

Question 10 continues on the next page

$\begin{gathered} 10 \\ \text { cont } \end{gathered}$	Alternative method 3 - trial and improvement			
	35×3 or 105	M1	may be implied by their total of the three ages being divided by 3	
	Trial of three numbers which fit the criteria, with either their sum correctly evaluated or their sum divided by 3	M1	eg $1+6+3=10$ or $(1+6+3) \div 3$ condone missing brackets	
	Second trial of three numbers which fit the criteria, with either their sum correctly evaluated or their sum divided by 3	M1dep	dep on previous M1 eg $2+7+6=15$ or $(2+7+6) \div 3$ condone missing brackets	
	20,25 and 60 selected as their final combination	M1dep	any order implies M4	
	60	A1		
	Additional Guidance			
	Up to M4 may be awarded for correct work seen in multiple attempts even if not subsequently used			
	Correct expressions, but the sum of the three ages is equated to 35 eg $5 x+5=35$			M0M1M0M0A0
	In alt 1, the correct value of x or the correct age for Conor for their two terms for Megan and Conor, with one correct, implies the first 4 marks eg x and $x-5$ and $3 x$, with $x=22$ or answer 66			M1M1M1M1A0
	In alt 2, the correct value of y for their two terms for Wenjie and Megan, with one correct, implies the first 4 marks eg y and $\frac{y}{3}$ and $\left(\frac{y}{3}-5\right)$, with $y=66$ or answer 66			M1M1M1M1A0
	In alt 1 and alt 2, condone missing brackets in equations if not recovered for up to M1M1M1 eg $x+x+5+3 x \div 3=35$ not recovered			M1M1M1M0A0

Q	Answer	Mark	Comments
$11(\mathbf{a})$	$\frac{58}{80}$ or 0.725 or 72.5%	B1	oe fraction, decimal or percentage

Q	Answer	Mark	Comments
11(b)		$\frac{73}{80}$ or 0.0 .9125 or 91.25%	

Q	Answer	Mark	Comments
11(c)	$\frac{41}{80} \text { or } 0.5125 \text { or } 51.25 \%$	B1	oe fraction, decimal or percentage SC1 answers 58 in (a) and 41 in (c) or $\frac{58}{x}$ in (a) and $\frac{41}{x}$ in (c), where x is an integer $\geqslant 58$ or answers 73 in (b) and 41 in (c) or $\frac{73}{x}$ in (b) and $\frac{41}{x}$ in (c), where x is an integer $\geqslant 73$
	Additional Guidance		
	58 in (a) and 73 in (b) and 41	res 0,	1, SC1

Q	Answer	Mark	Comments	
12(a)	$1 \leqslant a<10$		B1	allow 1.0 etc
	Additional Guidance			
	Accept 9.9 for 10			

Q	Answer	Mark	Comments	
12(b)	0.00045	B2	B1 4.5×10^{4} or 4.5×10^{-3} ignore extra 0s which don't affect the value	
	Additional Guidance			
	0.0045 in working with 4.5×10^{-3} on the answer line		B1	

Q	Answer	Mark	Comments	
13(a)	$(y=) a x+b$ and $(y=) a x-3 a+b$	B2	any letter for x other than a or b or y B1 $(y=) a x+b$ or $(y=) a(x-3)+b$ or $(y=) a x-3 a+b$ or substitution of two values for x with a difference of 3 and correct working to show that the output decreases by $3 a$ eg substituting $x=6$ and $x=3$ to get $6 a+b$ and $3 a+b$	
	Additional Guidance			
	Allow $x a$ for $a x$ throughout			
	Do not allow $a \times x+b$ for $a x+b$ unless recovered			
	Allow, eg $(x-3) \times a+b$ for $a(x-3)+b$			
	Do not allow missing brackets unless recovered eg do not allow $x-3 \times a$ for $a(x-3)$			
	Do not accept written answers without the necessary algebra eg The input has decreased by 3 and will then be multiplied by a, so the output will decrease by $3 a$			B0
	Ignore further non-contradictory work if B2 awarded			

Q	Answer ${ }^{\text {a }}$ Mark		Comments	
14	$\begin{array}{llll}6 & 21 \quad 3646\end{array}$	B2	B1 their median $=3.5 \times$ their LQ with the first eight values in order and their UQ and their last number \geqslant their median or their $\mathrm{UQ}=6 \times$ their LQ with the first ten numbers in order and their last number \geqslant their UQ or their range $=2 \times$ their interquartile range with all values in order	
	Additional Guidance			
	Take the boxes to be the LQ, median, UQ and highest value in that order			
	Decimal values can score up to B1 eg $5.5 \quad 20 \quad 33 \quad 45$ has $U Q=6 \times L Q$			B1
	Ignore blank boxes for B1			
	If all boxes are blank, mark the working lines			

Q	Answer	Mark	Comments
16	Alternative method 1 - equates coefficients and eliminates an unknown		
	$10 x+6 y=18 \text { and } 10 x-20 y=70$ or $20 x+12 y=36 \text { and } 6 x-12 y=42$	M1	oe equates coefficients of one unknown allow one term error
	$-20 y-6 y=70-18 \text { or }-26 y=52$ or $20 x+6 x=36+42 \text { or } 26 x=78$	M1dep	oe eliminates an unknown must be correct for their equations
	$x=3$ and $y=-2$	A2	A1 $x=3$ from correct method or $y=-2$ from correct method
	Alternative method 2 - substitutes for \boldsymbol{x}		
	$x=7+2 y$ or $x=\frac{9}{5}-\frac{3}{5} y$	M1	oe makes x the subject of one equation allow one term error
	$5(7+2 y)+3 y=9$ or $13 y=-26$ or $\begin{aligned} & 2\left(\frac{9}{5}-\frac{3}{5} y\right)-4 y=14 \\ & \text { or } \frac{-26}{5} y=\frac{-52}{5} \end{aligned}$	M1dep	oe eliminates x must be correct for their rearrangement
	$x=3$ and $y=-2$	A2	A1 $y=-2$ from this method

Question 16 continues on the next page

$\begin{gathered} 16 \\ \text { cont } \end{gathered}$	Alternative method 3 - substitutes for \boldsymbol{y}			
	$y=0.5 x-3.5$ or $y=3-\frac{5}{3} x$	M1	oe makes y the subject of one equation allow one term error	
	$5 x+3(0.5 x-3.5)=9$ or $6.5 x=20.5$ or $2 x-4\left(3-\frac{5}{3} x\right)=14 \text { or } \frac{26}{3} x=26$	M1dep	oe eliminates y must be correct for their rearrangement	
	$x=3$ and $y=-2$	A2	A1 $x=3$ from this method	
	Alternative method 4 - makes the same unknown the subject in both equations			
	$x=7+2 y \text { or } x=\frac{9}{5}-\frac{3}{5} y$ or $y=0.5 x-3.5 \text { or } y=3-\frac{5}{3} x$	M1	oe makes y or x the subject of one equation allow one term error	
	$7+2 y=\frac{9}{5}-\frac{3}{5} y$ or $\frac{13}{5} y=-\frac{26}{5}$ or $0.5 x-3.5=3-\frac{5}{3} x$ or $\frac{13}{6} x=6.5$	M1dep	oe makes y or x the subject of both equations (maximum one term error) and eliminates y or x must be correct for their rearrangements	
	$x=3$ and $y=-2$	A2	A1 $x=3$ from correct method or $y=-2$ from correct method	
	Additional Guidance			
	Up to M2 may be awarded for correct work seen in multiple attempts, even if not subsequently used			
	In alts 2, 3 and 4 allow rounding or truncating to 1 dp or better for up to M1M1 eg (Alt 4) $0.5 x-3.5=3-1.6 x$			M1M1
	Answers from trial and improvement or with no working score 0 or 4			

Q	Answer	Mark	Comments	
	Alternative method 1 - expressions in \boldsymbol{x}			
	$\pi(2 x)^{2}$ or $4 \pi x^{2}$	M1	oe area of the base of the cylinder	
	$\pi(2 x)^{2} \times x \text { or } 4 \pi x^{3}$ or $\frac{4}{3} \pi x^{3} \div 2 \text { or } \frac{2}{3} \pi x^{3}$	M1dep	oe volume of the hemisphere	
	$4 \pi x^{3}$ and $\frac{2}{3} \pi x^{3}$ and 1:6	A1	either order	
	Alternative method $\mathbf{2 - s u b s t i t u t i n g ~ a ~ v a l u e ~ f o r ~} \boldsymbol{x}$			
7	Substitutes a value for x and works the area of the base of the cylinder	M1	$\text { eg using } x=3,$	
	Substitutes the same value for x and works out the volume of the hemisphere or the cylinder	M1dep	eg using $x=3$ volume of hemisphere $=$ $\frac{4}{3} \pi \times 3^{3} \div 2 \text { or } 18 \pi$ or volume of cylinder $=$ $36 \pi \times 3 \text { or } 108 \pi$	
	Both correct volumes for their value of x and $1: 6$	A1	either order	
	Additional Guidance			
	$1: 6$ or $6: 1$ without correct working or values			MOMOAO
	Condone π missing consistently for all marks			
	Allow 'correct' and consistent values of π throughout (eg 3, 3.14, $\frac{22}{7}$)			
	Condone use of r for x throughout			

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{1 8}$	102	B1	

Q	Answer	Mark	Comments	
19	$4 \times 3 \times 2(\times 1) \times 3$ or $\begin{aligned} & 5 \times 4 \times 3 \times 2(\times 1) \times \frac{3}{5} \\ & \text { or } 120 \times \frac{3}{5} \end{aligned}$	M1	oe	
	72	A1	SC1 36 or 24 or 48 or 120	
	Additional Guidance			
	36 is the number of possible 5-digit numbers ending in two even digits			
	24 is the number of possible 5 -digit numbers ending in 2 or the number of possible 5 -digit numbers ending in 4 or the number of possible 5 -digit numbers ending in 6			
	48 is the number of possible 5-digit odd numbers			
	120 is the number of possible 5 -digit numbers			
	Ignore any listing of possible numbers			

Q	Answer	Mark	Comments	
21	$(x-4)^{2}-7$ or $a=4$ and $b=7$	B2	B1 $(x-4)^{2} \ldots$ or $(x-4)(x-4) \ldots$ or $a=4$ (implied by 4, -24) or $x^{2}-2 a x+a^{2}-b$ or $-2 a=-8 \text { or } 2 a=8$ or $a^{2}-b=9$ or correct b for their a	
	Additional Guidance			
	$(x+4)^{2}-7(7$ is correct for $a=-4)$			B1
	$(x-8)^{2}-55$ (55 is correct for $a=8$)			B1
	$(x+8)^{2}-55$ (55 is correct for $a=-8$)			B1

Q	Answer	Mark	Comments
24	Alternative method 1 - using the equations of the lines		
	$\frac{22-y}{6-0}=3$ or $22=3 \times 6+c$ or $(c=) 22-3 \times 6$ or $c=4$ or P is at $(0,4)$ or $(P R=) y=3 x+4$ or y-coordinate of P is 4 or y-coordinate of Q is 4	M1	oe equation using any letter y is the y-coordinate of P ignore missing brackets may be seen on diagram may be seen on diagram
	$3 m=-1$ or $(m=)-\frac{1}{3}$	M1	oe gradient of $R Q$
	$22=\text { their }-\frac{1}{3} \times 6+c$ or $22=-2+c$ or $c=24$ or $(R Q=) y=-\frac{1}{3} x+24$	M1dep	oe equation in c dep on previous mark oe equation of $R Q$
	their $\left(-\frac{1}{3} x+24\right)=$ their 4 or x-coordinate of Q is 60	M1dep	oe equation in x where x is the x-coordinate of Q dep on M3 $-\frac{1}{3}=\frac{22-\text { their } 4}{6-x}$ implies M4 if their 5 is correct or from correct working
	$(60,4)$	A1	

Question 24 continues on the next page

$\begin{gathered} 24 \\ \text { cont } \end{gathered}$	Alternative method 2 - using similar triangles		
	Drops a perpendicular from R to point S on $P Q$ and uses $R S=3 P S=18$ to work out that P is at $(0,4)$	M1	any or no letter $\text { eg } 22-3 \times 6$
	$3 m=-1$ or ($m=$) $-\frac{1}{3}$ or $\frac{R S}{S Q}=\frac{1}{3}$	M1	oe gradient of $R Q$
	18×3 or 54	M1dep	length of $S Q$ may be seen on diagram dep on previous mark
	$6+\text { their } 54$ or x-coordinate of Q is 60	M1dep	
	$(60,4)$	A1	
		ditional	uidance
	Note that 60 (for the x-coordinate if 4 is also seen (on alt 1)) implies	M3 (on alt 2) and implies M4

Q	Answer	Mark	Comments
25	$\sin 60=\frac{\sqrt{3}}{2}$ or $\tan 60=\sqrt{3}$ or $\cos 30=\frac{\sqrt{3}}{2}$	M1	oe eg $5 \sin 60=\frac{5 \sqrt{3}}{2}$ or $2 \tan 60=2 \sqrt{3}$ implied by position in the expression may be seen in a table
	substitution of all three correct values	M1dep	eg $\frac{\frac{5 \sqrt{2}}{2}-\frac{\sqrt{2}}{2}}{2 \sqrt{3}} \text { or } \frac{\frac{4 \sqrt{2}}{3}}{2 \sqrt{3}} \text { or } \frac{2 \sqrt{3}}{2 \sqrt{3}}$
	1	M1dep	
	$(1=) \tan 45$ or $x=45$ with full working seen for M3	A1	
	Additional Guidance		
	Reference to 45° being an acu	e is not r	quired

Q	Answer	Mark	Comments
26	Alternative method 1		
	$\sqrt{\frac{36 \pi}{\pi}} \text { or } 6$	M1	oe may be seen on diagram implied by diameter $=12$
	$x^{2}+x^{2}=(\text { their } 6)^{2}$ or $2 x^{2}=36$ or $x^{2}=18$ or their $6 \times \sin 45$ or their $6 \times \cos 45$ or their $6 \times \frac{1}{\sqrt{2}}$	M1	oe any letter (condone a) their 6 is their length $O Q$ (the radius of the circle)
	$\sqrt{\text { their } 6^{2} \div 2}$ or $\sqrt{18}$ or $3 \sqrt{2}$ or $(\sqrt{18})^{2}$ or $(3 \sqrt{2})^{2}$ or (their $6 \times \sin 45)^{2}$ or (their $10 \times \cos 45)^{2}$ or $\left(\text { their } 6 \times \frac{1}{\sqrt{2}}\right)^{2}$ or 18	M1dep	oe value for the length of one side of the square or the area of the square dep on previous mark
	2 with full working seen for M3	A1	

Question 26 continues on the next page

Q	Answer	Mark	Comments	
27	$\left(\right.$ Total volume $=$) $\frac{200}{a}+\frac{300}{b}$	M1	oe eg $\frac{300 a}{a b}+\frac{200 b}{a b}$ or $\frac{300 a+200 b}{a b}$	
	correct expression for total mass total volume	M1dep	$\text { eg }(200+300) \div\left(\frac{300 a}{a b}+\frac{200 b}{a b}\right)$ or $500 \div \frac{300 a+200 b}{a b}$ or $500 \times \frac{a b}{300 a+200 b}$	
	$500 \times \frac{a b}{300 a+200 b}=\frac{5 a b}{3 a+2 b}$	A1	condone $2 b+3 a$ for $3 a+2 b$	
	Additional Guidance			
	Students can gain M1M1 if they incorrectly simplify a correct expression for total volume before forming the division eg $\frac{200}{a}+\frac{300}{b}=\frac{500}{a+b}$ followed by $60 \div \frac{500}{a+b}$			M1M1A0
	Allow correct cancellation of 500, 300 and 200 at any stage of the working			

