

GCSE MATHEMATICS 8300/1H

Higher Tier

Paper 1 Non-Calculator

Shadow paper based on June 2023 paper

Mark scheme

June 2023

Version: 1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≼ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comment	ts
	(0).06	B1	oe	
	Ade	ditional G	uidance	
	Mark the answer line. If this is blank,	mark the	working	
1(a)	If values are given in one or more for working with nothing on the answer li eg1 $0.06 = \frac{3}{50}$ on answer line eg2 $\frac{6}{100}$ and 0.6 in working with $\frac{6}{100}$ eg3 $\frac{6}{100}$ and 0.6 in working with 0.6	B1 B1 B0		

Q	Answer	Mark	Commer	its	
	$\frac{4}{35}$				
	Ade	ditional G	Guidance		
	Mark the answer line. If this is blank,	mark the	working		
	Allow 0.114 or correct notation for				
1(b)	(b) If values are given in one or more forms, either on the answer line or in working with nothing on the answer line, all values must be correct				
	eg1 $\frac{8}{70} = 0.114$ on answer line	B1			
	eg2 $\frac{8}{70}$ and 0.870 in working with answer line blank				
	$\frac{\frac{4}{5}}{7}$ or $\frac{0.8}{7}$ without answer in correct form				

Q	Answer	Mark	Commen	ıts
	80			
	Ad	ditional G	Guidance	
	Mark the answer line. If this is blank,	mark the	working	
	If values are given in one or more forms, either on the answer line or in working with nothing on the answer line, all values must be correct			
1(c)	eg1 $\frac{160}{2} = 80$ on answer line			B1
	eg2 $\frac{160}{2}$ and $79\frac{1}{2}$ in working with a	В0		
	Do not allow unprocessed answers			
	eg $\frac{160}{2}$	B0		

Q	Answer	Mark	Commen	its
	x < 12 or 12 > x	B1		
	Additional Guidance $x = 12$ in working with $x < 12$ on answer line			
2				B1
2	x < 12 and $(x =) 12$ on answer line			B0
	x < 12 in working with $x = 12$ or 12	B0		
	Ignore number lines drawn			

Q	Answer	Mark	Commen	ts
	$2\frac{7}{9}$	oe mixed number		
	Ad	ditional G	Buidance	
	$\frac{25}{9} = 2\frac{7}{9}$ or 2.77 $= 2\frac{7}{9}$ on answe	B1		
3	$2\frac{7}{9} = \frac{25}{9}$ or $2\frac{7}{9} = 2.77$ on answer	В0		
	Otherwise, $2\frac{7}{9}$ and $\frac{25}{9}$ or $2\frac{7}{9}$ a order (or in working with answer line	В0		
	1 ¹⁶ 9	B0		
	$2\left(\frac{7}{9}\right)$ or $2+\frac{7}{9}$	В0		

Q	Answer	Mark	Comments		
	Alternative method 1 – numerical				
	1 and 6 and 3 or 10 (parts) or numbers in the ratio 1 : 3 : 6 or (angle sum on a straight line =) 180	M1	oe may be seen in a ratio eg $\frac{1}{6}$: 1: $\frac{3}{6}$ or $\frac{1}{3}$: 2:1 numbers can be in any order eg 30, 10, 60		
	180 ÷ (1 + 6 + 3) or 18 or 180 × $\frac{3}{10}$	M1dep	oe		
	54	A1			
	Alternative method 2 – algebraic				
4	x and $6x$ and $3x$ or $10x$ or (angle sum on a straight line =) 180	M1	oe correct terms with any angle as <i>x</i> any letter, any order may be seen on diagram		
	Correct equation with correct method to solve for one angle	M1dep	eg $x + 6x + 3x = 180$ and $180 \div (1 + 6 + 3)$		
	54	A1			
	Additional Guidance				
	$x + 6x + 3x = 360$ or $360 \div 10$			M1M0A0	
	$\frac{1}{6}x + x + \frac{3}{6}x = 180 \text{ and } 180 \div \left(\frac{1}{6} + 1 + \frac{3}{6}\right)$			M1M1	
	$\frac{1}{3}x + \frac{6}{3}x + x = 180 \text{ and } 180 \div \left(\frac{1}{3} + \frac{6}{3} + 1\right)$			M1M1	
	Angle <i>DBC</i> marked as 54 on the diagram with answer line blank			M1M1A1	
	18 and 54 in working with no or incor	rect answ	er chosen	M1M1A0	

Q	Answer	Mark	Comments	
	All conditions met: first number is prime second number is prime correctly evaluated even answer answer in range 	В3	if their product is incorrectly missing, then 'even answer' in range' refer to the correct their multiplication B2 4 conditions met B1 3 conditions met	and 'answer
5	Additional Guidance			
	$2 \times 23 = 46$ (or $23 \times 2 = 46$) is the c	B3		
	Allow 40 to 50 inclusive for 'answer in			
	Award the best mark from boxes or in working for up to B2			
	The two prime numbers do not have			

Q	Answer	Mark	Comments	
	$\frac{3}{4}$ × 72 or 54	M1	oe eg 72÷4×3 implied by 126	
	$\frac{1}{6}$ × their 54 or 9	M1dep	oe eg 54 ÷ 6 accept 0.16 or better for $\frac{1}{6}$	
	$\frac{4}{9} \times 72$ or 32	M1	oe eg 72 ÷ 9 × 4 accept 0.44 or better for $\frac{4}{9}$	
6	41(.00)	A1	SC2 [54.65, 54.67] or 36 condone incorrect money notation eg 41.0 or 41.00p	
	Additional Guidance			
	SC2 for [54.65, 54.67] is from misrea	ding as C	hloe gets £72	
	SC2 for 36 is from $\frac{4}{9}$ of 54 plus $\frac{1}{6}$ of 72			
	Do not accept ' $\frac{3}{4}$ of 72' or ' $\frac{1}{6}$ of 54' or ' $\frac{4}{9}$ of 72' for M marks unless accompanied by a correct method or value			

Q	Answer	Mark	Comments	
	Alternative method 1 – evaluation and division			
	$(3^2 =) 9 \text{ or } (5 \times 3^2 =) 45$		oe	
	or			
	360 ÷ 5 or 72	M1 oe eg 5 × 72 = 360		
	or 360 ÷ 3 ² or 40		oe eg 9 × 40 = 360	
	$360 \div 5 \div 3^2$ or 8	M1dep	oe eg 8 × 45 = 360	
	3 with M1 awarded and not from incorrect working	A1		
	Alternative method 2 – product of	prime fac	tors	
	360 written as a product of factors		eg 2 and 180 or 3 and 120)
	where at least one factor is prime	M1	or 2 and 2 and 90	
			may be seen on a factor tree or in repeated division	
7			allow one strand to be incor previous value completes th	
			eg 10 \times 36 followed by	
			$2 \times 5 \times 6 \times 8$ implies 2×5	× 36 for M1
	2 and 2 and 2 and 3 and 3 and 5	M1dep	may be seen on a factor tree or in repeated division	
	3 with M1 awarded and not from incorrect working	A1		
	Additional Guidance			
	$8 \times 9 \times 5 = 360$ and answer 3			M1M1A1
	2 ³ on answer line with M2 awarded			M1M1A0
	Answer 3 on answer line with no wor	king		M0M0A0
	Do not allow 360 ÷ 5 × 3 ² for M2 in a $\frac{360}{5 \times 3^2}$ or 360 ÷ (5 × 3 ²)	lt 1 unless	s recovered, but do allow	

Q	Answer	Mark	Commen	ts
	7 <i>x</i> + 18	B2	B1 $10x + 12$ or $-3x + 6$ or $7x + a$ or $bx + 18$, w can be any numbers	
8	Additional Guidance			
Ū	Do not ignore further working for B2			
	eg $7x + 18 = 25x$			B1
	eg 7x + 18, x = $\frac{18}{7}$			B1

Q	Answer	Mark	Comments		
	Any two from: Reference to graph passing		e axis		
	through point where $x = 0$ Reference to graph being incorrect for negative <i>x</i> values	B2	eg the graph to the left of th should be below the <i>x</i> -axis	e <i>y-</i> axis	
	Reference to the graph stopping before the end of the axes/axis		eg the graph should go to th the axes	ne ends of	
	Ad	ditional G	Guidance		
	Ignore non-contradictory, irrelevant re	esponses	alongside a correct response		
	Draws correct graph			B2	
	Draws graph with one section correct for positive values of <i>x</i> or negative values of <i>x</i>				
9	'It isn't the graph of $y = \frac{1}{x}$ ' scores B0, but B1 may still be scored for the other criticism				
	'There are no numbers on the axes' s for the other criticism	cores B0	, but B1 may still be scored		
	Mark for graph touching <i>y</i> -axis				
	You cannot have $x = 0$			B1	
	The line in the top right should be mo	ved to the	e right	B1	
	It says x doesn't = 0 but it (the sketch) does		B1	
	One line is touching the <i>y</i> -axis				
	The lines should be symmetrical				
	You cannot have $y = 0$			B0	
	One line is touching the <i>y</i> -axis but the	e other isr	ı't	B0	

Question 9 Additional Guidance continues on the next page

	Mark for negative values being in the wrong quadrant	
	There shouldn't be anything in the top-left section	B1
	There should be something in the bottom-left section	B1
	It is the graph of $y = \frac{1}{x^2}$	B1
	It should have rotational symmetry	B1
	It should be symmetrical about $y = x$	B1
9	It should be symmetrical about $y = -x$	B1
cont	It should be symmetrical	В0
	One should be negative	В0
	The bit on the left is wrong	В0
	The negative values are plotted incorrectly	В0
	Reference to the graph stopping before the end of the axes	
	It stops before the end of the axes	B1
	The lines don't go far enough	B1
	The lines need to be higher up	В0

Q	Answer	Mark	Comments		
	Alternative method 1 – algebra based on Wenjie's age				
	35 × 3 or 105	M1	may be implied by their algebraic total of the three ages being divided by 3		
	x + 5 or $3xor 5x + 5$	M1	oe expressions any letter throughout		
	x + their (x + 5) + their 3x = their 105 or $5x + 5 = \text{their } 105$	M1dep	oe equation eg $\frac{x+x+5+3x}{3} = 35$		
	(<i>x</i> =) 20		dep on M1M1 correct solution to their equation		
		M1dep	if the solution has a decimal part allow truncation or rounding to the nearest whole number		
	60	A1			
	Alternative method 2 – algebra based on Conor's age				
10	35 × 3 or 105	M1	may be implied by their algebraic total of the three ages being divided by 3		
	$\frac{y}{3} \text{ or } \frac{y}{3} + 5$ or $\frac{5y}{3} + 5$	M1	oe expressions any letter throughout		
	$y + \text{their } \frac{y}{3} + \text{their } \left(\frac{y}{3} + 5\right) = \text{their}$ 105	M1dep	oe equation eg $\frac{y + \frac{y}{3} + \frac{y}{3} + 5}{3} = 35$ dep on M1M1		
	$3y + \text{their } y + \text{their } (y + 15) = 3 \times \text{their } 105$		their equation with no denominator		
	or $5y + 15 = 315$ or $5y = 300$	M1dep			
	60	A1			

Question 10 continues on the next page

	Alternative method 3 – trial and improvement			
	35 × 3 or 105	M1	may be implied by their ages being divided by 3	
	Trial of three numbers which fit the criteria, with either their sum correctly evaluated or their sum divided by 3	M1	eg $1 + 6 + 3 = 10$ or $(1 + 6 + 3) \div 3$ condone missing bracke	ets
	Second trial of three numbers which fit the criteria, with either their sum correctly evaluated or their sum divided by 3	M1dep	dep on previous M1 eg $2+7+6=15$ or $(2+7+6) \div 3$ condone missing bracke	ets
	20, 25 and 60 selected as their final combination	M1dep	any order implies M4	
	60	A1		
10 cont	Ad			
	Up to M4 may be awarded for correct even if not subsequently used			
	Correct expressions, but the sum of the three ages is equated to 35 eg $5x + 5 = 35$			M0M1M0M0A
	In alt 1, the correct value of x or the correct age for Conor for their two terms for Megan and Conor, with one correct, implies the first 4 marks			
	eg x and $x - 5$ and $3x$, with $x = 22$ or answer 66			M1M1M1M1A
	In alt 2, the correct value of y for their with one correct, implies the first 4 m			
	eg y and $\frac{y}{3}$ and $\left(\frac{y}{3}-5\right)$, with $y = 66$	or ansv	ver 66	M1M1M1M1 <i>H</i>
	In alt 1 and alt 2, condone missing br recovered for up to M1M1M1	ackets in	equations if not	
	eg $x + x + 5 + 3x \div 3 = 35$ not recov	vered		M1M1M1M0A

C	2	Answer	Mark	Comments
11((a)	$\frac{58}{80}$ or 0.725 or 72.5%	B1	oe fraction, decimal or percentage

Q	Answer	Mark	Comments
11(b)	73/80 or 0.0.9125 or 91.25%	B1	oe fraction, decimal or percentage SC1 answers 58 in (a) and 73 in (b) or $\frac{58}{x}$ in (a) and $\frac{73}{x}$ in (b) where <i>x</i> is an integer \ge 73

Q	Answer	Mark	Comments	
11(c)	41/80 or 0.5125 or 51.25%	B1	oe fraction, decimal or percentage SC1 answers 58 in (a) and 41 in (c) or $\frac{58}{x}$ in (a) and $\frac{41}{x}$ in (c), where x is an integer \ge 58 or answers 73 in (b) and 41 in (c) or $\frac{73}{x}$ in (b) and $\frac{41}{x}$ in (c), where x is an integer \ge 73	
	Additional Guidance			
	58 in (a) and 73 in (b) and 41 in (c) scores 0, SC1, SC1			

Q	Answer	Mark	Comments	
	1 <i>≤ a <</i> 10	B1	allow 1.0 etc	
12(a)	Additional Guidance			
	Accept 9.9 for 10			

Q	Answer	Mark	Comments	
12(b)	0.00045	B2	B1 4.5×10^4 or 4.5×10^{-3} ignore extra 0s which don't a value	affect the
	Additional Guidance			
	0.0045 in working with 4.5 \times 10 ⁻³ on the answer line		B1	

Q	Answer	Mark	Comments		
	(y =) ax + b and (y =) ax - 3a + b	В2	any letter for x other than a of B1 (y =) ax + b or (y =) a(x - 3) + b or $(y =) ax - 3a + b$ or substitution of two values for difference of 3 and correct w show that the output decrease eg substituting $x = 6$ and x 6a + b and $3a + b$	r <i>x</i> with a vorking to ses by 3 <i>a</i>	
13(a)	Additional Guidance				
	Allow <i>xa</i> for <i>ax</i> throughout				
	Do not allow $a \times x + b$ for $ax + b$ unless recovered				
	Allow, eg $(x-3) \times a + b$ for $a(x-3)$) + <i>b</i>			
	Do not allow missing brackets unless recovered eg do not allow $x - 3 \times a$ for $a(x - 3)$				
	Do not accept written answers without the necessary algebra				
	eg The input has decreased by 3 and output will decrease by 3 <i>a</i>	d will then	be multiplied by <i>a</i> , so the	В0	
Ignore further non-contradictory work if B2 awarded			arded		

Q	Answer	Mark	Comments		
	Alternative method 1 – using <i>k</i>				
	f(2) × f(1) (= $8k \times k$) = $8k^2$ or f(2) = $8k$	M1	condone <i>k</i> ² 8 or <i>k</i> 8		
	$f(2) \times f(1) = 8k^2$ and $f(2) = 8k$ and No	A1	condone $k^2 8$ or $k 8$		
	Alternative method 2 – substituting	g a value	for <i>k</i>		
13(b)	Identifies a value of k other than 1 and correctly evaluates f(2) × f(1) or f(2)	M1	eg $k = 3$ and f(2) × f(1) = 72 or f(2) = 24		
	Identifies a value of k other than 1 and correctly evaluates f(2) × f(1) and f(2) and No	A1	eg $k = 3$ and f(2) × f(1) = 72 and f(2) = 24 and No		
	Additional Guidance				
	8k from f(2) × f(1) is M0, but M1 can be awarded if accompanied by $f(2) = 8k$				
	Students may correctly state that $f(2) \times f(1)$ and $f(2)$ are (only) equal when $k = 1$				
	This may replace 'No' in their answer, but does not score without $8k$ and $8k^2$				
	Do not allow unprocessed values, eg	2 ³ or 1 ³			

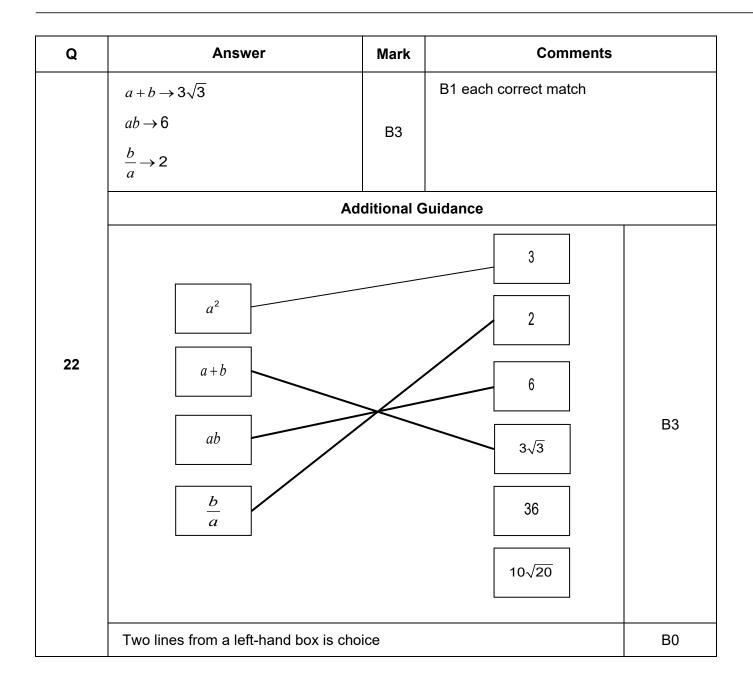
Q	Answer	Mark	Commer	nts
14	6 21 36 46	B2	B1 their median = $3.5 \times$ the first eight values in orde and their last number \geq or their UQ = $6 \times$ their LQ numbers in order and th their UQ or their range = $2 \times$ their in with all values in order	r and their UQ their median with the first ten eir last number ≽
	Additional Guidance			
	Take the boxes to be the LQ, median order	i, UQ and	highest value in that	
	Decimal values can score up to B1			
	eg 5.5 20 33 45 has UQ = 6 × L	Q		B1
	Ignore blank boxes for B1			
	If all boxes are blank, mark the working	ng lines		

Q	Answer	Mark	Comments	
15	Not true Not true True True	B4	B1 each correct answer	
	Additional Guidance			
	Allow a cross if it's the only answer in that row			
	If one tick and one or two crosses are given in a row, mark the tick			

Q	Answer	Mark	Comments	
	Alternative method 1 – equates co	efficients	and eliminates an unknown	
	10x + 6y = 18 and $10x - 20y = 70or20x + 12y = 36$ and $6x - 12y = 42$	M1	oe equates coefficients of one unknown allow one term error	
	-20y - 6y = 70 - 18 or $-26y = 52or20x + 6x = 36 + 42$ or $26x = 78$	M1dep	oe eliminates an unknown must be correct for their equations	
	x = 3 and $y = -2$	A2	A1 $x = 3$ from correct method or $y = -2$ from correct method	
16	Alternative method 2 – substitutes for <i>x</i>			
	x = 7 + 2y or $x = \frac{9}{5} - \frac{3}{5}y$	M1	oe makes <i>x</i> the subject of one equation allow one term error	
	5(7 + 2y) + 3y = 9 or $13y = -26$ or $2\left(\frac{9}{5} - \frac{3}{5}y\right) - 4y = 14$ or $\frac{-26}{5}y = \frac{-52}{5}$	M1dep	oe eliminates <i>x</i> must be correct for their rearrangement	
	x = 3 and $y = -2$	A2	A1 $y = -2$ from this method	

Question 16 continues on the next page

	Alternative method 3 – substitutes	for y		
	y = 0.5x - 3.5 or $y = 3 - \frac{5}{3}x$	M1	oe makes <i>y</i> the subject of one er allow one term error	quation
	5x + 3(0.5x - 3.5) = 9 or $6.5x = 20.5$ or $2x - 4\left(3 - \frac{5}{3}x\right) = 14$ or $\frac{26}{3}x = 26$	M1dep	oe eliminates <i>y</i> must be correct for their ream	rangement
	x = 3 and $y = -2$	A2	A1 $x = 3$ from this method	
	Alternative method 4 – makes the	same unk	nown the subject in both equ	ations
	$x = 7 + 2y \text{ or } x = \frac{9}{5} - \frac{3}{5}y$ or $y = 0.5x - 3.5 \text{ or } y = 3 - \frac{5}{3}x$	M1	oe makes <i>y</i> or <i>x</i> the subject of o allow one term error	ne equation
16 cont	7 + 2y = $\frac{9}{5} - \frac{3}{5}y$ or $\frac{13}{5}y = -\frac{26}{5}$ or $0.5x - 3.5 = 3 - \frac{5}{3}x$ or $\frac{13}{6}x = 6.5$	M1dep	oe makes y or x the subject of be equations (maximum one tern and eliminates y or x must be correct for their rear	m error)
	x = 3 and $y = -2$	A2	A1 $x = 3$ from correct method or $y = -2$ from correct method	
	Additional Guidance			
	Up to M2 may be awarded for correct work seen in multiple attempts, even if not subsequently used			
	In alts 2, 3 and 4 allow rounding or tr M1M1	uncating to	o 1dp or better for up to	
	eg (Alt 4) $0.5x - 3.5 = 3 - 1.6x$			M1M1
	Answers from trial and improvement or with no working score 0 or 4			


Q	Answer	Mark	Comments		
	Alternative method 1 – expressions in <i>x</i>				
	$\pi(2x)^2$ or $4\pi x^2$	M1	oe area of the base of the cy	/linder	
	$\pi(2x)^2 \times x$ or $4\pi x^3$		oe volume of the cylinder		
	or $\frac{4}{3}\pi x^{3} \div 2 \text{ or } \frac{2}{3}\pi x^{3}$	M1dep	oe volume of the hemisphere	9	
	$4\pi x^3$ and $\frac{2}{3}\pi x^3$ and 1:6	A1	either order		
	Alternative method 2 – substituting	g a value	for <i>x</i>		
	Substitutes a value for <i>x</i> and works the area of the base of the cylinder	M1	eg using $x = 3$,		
			36л		
17	Substitutes the same value for <i>x</i> and works out the volume of the		eg using $x = 3$		
	hemisphere or the cylinder		volume of hemisphere =		
		M1dep	$\frac{4}{3}\pi \times 3^3 \div 2 \text{ or } 18\pi$		
			or		
			volume of cylinder =		
			36π×3 or 108π		
	Both correct volumes for their value of <i>x</i> and 1 : 6	A1	either order		
	Additional Guidance				
	1:6 or 6:1 without correct working or values			M0M0A0	
	Condone π missing consistently for all marks				
	Allow 'correct' and consistent values of π throughout (eg 3, 3.14, $\frac{22}{7}$)				
	Condone use of <i>r</i> for <i>x</i> throughout				

Q	Answer	Mark	Comments
18	102	B1	

Q	Answer	Mark	Comments		
	$4 \times 3 \times 2 (\times 1) \times 3$ or $5 \times 4 \times 3 \times 2 (\times 1) \times \frac{3}{5}$ or $120 \times \frac{3}{5}$	M1	oe		
	72	SC1 36 or 24 or 48 or 120			
10	Additional Guidance				
19	19 36 is the number of possible 5-digit numbers ending in two even digits				
	 24 is the number of possible 5-digit numbers ending in 2 or the number of possible 5-digit numbers ending in 4 or the number of possible 5-digit numbers ending in 6 48 is the number of possible 5-digit odd numbers 				
	120 is the number of possible 5-digit numbers				
	Ignore any listing of possible numbers				

Q	Answer	Mark	Comments		
	Alternative method 1 – finds K in t	erms of L	and substitutes		
	2K = 3L or K = L + 2M	M1	oe correct equation eg $K = \frac{3L}{2}$ or $L = \frac{2K}{3}$ may be implied by values on diagram		
	1.5L = L + 2M	M1dep	oe correct equation in L and M eg 3L = 2L + 4M		
	4	A1	condone 4M (= L)		
	Alternative method 2 – finds two v	variables i	n terms of the other variable		
	Finds one variable in terms of one other		oe fractions, decimals, percentages or ratio		
	eg L is $\frac{2}{3}$ of K	M1	eg K: L = 1: $\frac{2}{3}$		
	Finds two variables in terms of the other		may be implied by values on diagram oe fractions, decimals, percentages or ratio		
20	eg L is $\frac{2}{3}$ of K and M is $\frac{1}{6}$ of K	M1dep	eg K : L : M = 1 : $\frac{2}{3}$: $\frac{1}{6}$ may be implied by values on diagram		
	4	A1	condone 4M (= L)		
	Alternative method 3 – assumes a				
	Assumes a mass for one unknown and works out the mass of one other	M1	eg K = 6 kg and L = 4 kg		
	Assumes a mass for one unknown and works out the masses of the other two	M1dep	eg $K = 6 \text{ kg and } L = 4 \text{ kg and } M = 1 \text{ kg}$		
	4	A1	condone 4M (= L)		
	Ad	Additional Guidance			
	Condone 0.66 or better for $\frac{2}{3}$ and 0 correct).0.16 or b	etter for $\frac{1}{6}$ must be		
	2K : 3L is not enough for M1				
	Ignore units				

Q	Answer	Mark	Commer	nts
21	$(x-4)^2 - 7$ or $a = 4$ and $b = 7$	В2	B1 $(x-4)^2$ or $(x-4)^2$ or a = 4 (implied by 4, -24) or $x^2 - 2ax + a^2 - b$ or -2a = -8 or $2a = 8ora^2 - b = 9orcorrect b for their a$	
	Ad	ditional G	Guidance	
	$(x+4)^2 - 7$ (7 is correct for $a = -4$)			B1
	$(x-8)^2 - 55$ (55 is correct for $a = 8$)			B1
	$(x+8)^2 - 55$ (55 is correct for $a = -8$)			B1

Q	Answer	Mark	Comments		
	Alternative method 1 – subtractin	g powers	of 10 algebraically		
	Denotes the given recurring decimal by a letter and multiplies by one of 10, 100, etc	M1	eg 10 <i>x</i> = 2.4242 or 100 <i>x</i> = 24.2424		
	Denotes the given recurring decimal by a letter and multiplies by one or two of 10, 100, etc and subtracts accordingly	M1dep	eg 100x - x = 24.24242 0.24 or $99x = 24$ or $\frac{24}{99}$ or 10000x - 100x = 2424.2424 24.2424 or $9900x = 2400$ or $\frac{240}{990}$		
	$\frac{8}{33}$	A1			
	Alternative method 2 – subtracting powers of 10 numerically				
23	Multiplies the given decimal by one of 10, 100, etc	M1	eg 0.24×10=2.42		
	Multiplies the given decimal by one or two of 10, 100, etc and subtracts appropriately in fraction form	M1dep	eg $0.\dot{2}\dot{4} \times 1000 = 242.\dot{4}\dot{2}$ and $0.\dot{2}\dot{4} \times 100 = 2.\dot{4}\dot{2}$ and $\frac{242.42 - 2.42}{1000 - 10}$ or $\frac{240}{990}$		
	8 33	A1			
	Additional Guidance				
	Condone decimals within fractions up to M2 eg $\frac{2.4}{9.9}$			M2	
	Equals signs may be implied throughout				
	Subtraction signs must be seen or the results correct				
	Recurring decimals should be denoted by correct notation or at least two of the recurring digits followed by at least two dots. However, condone missing dots if the result is, or would be, correct				
	eg condone $242.42 - 2.42 = 1000x$	– 10 <i>x</i>			

Q	Answer	Mark	Comments		
	Alternative method 1 – using the equations of the lines				
	$\frac{22 - y}{6 - 0} = 3$ or 22 = 3 × 6 + c or (c =) 22 - 3 × 6 or c = 4 or P is at (0, 4) or (PR =) y = 3x + 4	M1	oe equation using any letter y is the y-coordinate of P ignore missing brackets		
	or y-coordinate of P is 4 or y-coordinate of Q is 4		may be seen on diagram may be seen on diagram		
	3m = -1 or $(m =) -\frac{1}{3}$	M1	oe gradient of <i>RQ</i>		
24	$22 = \text{their } -\frac{1}{3} \times 6 + c$ or 22 = -2 + c or $c = 24$	M1dep	oe equation in <i>c</i> dep on previous mark		
	or (<i>RQ</i> =) $y = -\frac{1}{3}x + 24$		oe equation of <i>RQ</i>		
	their $\left(-\frac{1}{3}x+24\right) =$ their 4 or <i>x</i> -coordinate of Q is 60	M1dep	oe equation in x where x is the x-coordinate of Q dep on M3 $-\frac{1}{3} = \frac{22 - \text{their 4}}{6 - x}$ implies M4 if their 5 is correct or from correct working		
	(60, 4)	A1			

Question 24 continues on the next page

	Alternative method 2 – using similar triangles				
	Drops a perpendicular from <i>R</i> to point <i>S</i> on <i>PQ</i>		any or no letter		
	and	M1			
	uses <i>RS</i> = 3 <i>PS</i> = 18 to work out that <i>P</i> is at (0, 4)		eg 22-3×6		
	3m = -1		ое		
	or $(m =) -\frac{1}{3}$ or	M1	gradient of <i>RQ</i>		
24	$\frac{RS}{SQ} = \frac{1}{3}$				
cont	18 × 3 or 54		length of SQ		
		M1dep	may be seen on diagram		
			dep on previous mark		
	6 + their 54				
	or	M1dep			
	<i>x</i> -coordinate of Q is 60				
	(60, 4)	A1			
	Additional Guidance				
	Note that 60 (for the <i>x</i> -coordinate of <i>Q</i>) implies M3 (on alt 2) and implies M4 if 4 is also seen (on alt 1)				

Q	Answer	Mark	Comments	
	$\sin 60 = \frac{\sqrt{3}}{2}$ or $\tan 60 = \sqrt{3}$ or $\cos 30 = \frac{\sqrt{3}}{2}$	M1	oe eg 5 sin $60 = \frac{5\sqrt{3}}{2}$ or 2tan $60 = 2\sqrt{3}$ implied by position in the expression may be seen in a table	
25	substitution of all three correct values	M1dep	eg $\frac{5\sqrt{2}}{2} - \frac{\sqrt{2}}{2}$ or $\frac{4\sqrt{2}}{3}$ or $\frac{2\sqrt{3}}{2\sqrt{3}}$	
	1	M1dep		
	(1 =) tan 45 or $x = 45$ with full working seen for M3	A1		
	Additional Guidance			
	Reference to 45° being an acute angle is not required			

Q	Answer	Mark	Comments		
	Alternative method 1				
	$\sqrt{\frac{36\pi}{\pi}}$ or 6	M1	oe may be seen on diagram implied by diameter = 12		
	$x^{2} + x^{2} = (\text{their 6})^{2}$ or $2x^{2} = 36$ or $x^{2} = 18$ or their $6 \times \sin 45$ or their $6 \times \cos 45$ or their $6 \times \frac{1}{\sqrt{2}}$	M1	oe any letter (condone <i>a</i>) their 6 is their length <i>O</i> Q (the radius of the circle)		
26	$\sqrt{\text{their } 6^2 \div 2}$ or $\sqrt{18}$ or $3\sqrt{2}$ or $(\sqrt{18})^2$ or $(3\sqrt{2})^2$ or $(\text{their } 6 \times \sin 45)^2$ or $(\text{their } 10 \times \cos 45)^2$ or $(\text{their } 6 \times \frac{1}{\sqrt{2}})^2$ or 18	M1dep	oe value for the length of one side of the square or the area of the square dep on previous mark		
	2 with full working seen for M3	A1			

Question 26 continues on the next page

	Alternative method 2				
26 cont	$\sqrt{\frac{36\pi}{\pi}}$ or 6or side length of square $=\frac{6}{\sqrt{a}}$	M1	oe may be seen on diagram implied by diameter = 12		
	(Area of square $=\frac{36}{a}$ and) side length of square $=\frac{6}{\sqrt{a}}$ and $\left(\frac{6}{\sqrt{a}}\right)^2 + \left(\frac{6}{\sqrt{a}}\right)^2 = (\text{their } 6)^2$	M1	oe their 6 is their length <i>OQ</i> (the radius of the circle) condone missing brackets if recovered		
	$\frac{36}{a} + \frac{36}{a} = (\text{their } 6)^2$ or $\frac{72}{a} = 36$	M1dep	dep on M1M1		
	2 with full working seen for M3	A1			
	Additional Guidance				
	2 with no working			MOMOMOAO	
	$\frac{1}{2}$ on answer line (may score method marks)			A0	
	Area of 18 from $\frac{1}{2}$ product of diagonals scores first 3 M marks				

Q	Answer	Mark	Comments		
27	(Total volume =) $\frac{200}{a} + \frac{300}{b}$	M1	oe eg $\frac{300a}{ab} + \frac{200b}{ab}$ or $\frac{300a + 200b}{ab}$		
	correct expression for total mass ÷ total volume		eg (200 + 300) ÷ $\left(\frac{300a}{ab} + \frac{200b}{ab}\right)$		
			or		
		M1dep	$500 \div \frac{300a + 200b}{ab}$		
			or $500 \times \frac{ab}{300a + 200b}$		
	$500 \times \frac{ab}{300a + 200b} = \frac{5ab}{3a + 2b}$	A1	condone $2b + 3a$ for $3a + 2b$		
	Additional Guidance				
	Students can gain M1M1 if they incorrectly simplify a correct expression for total volume before forming the division				
	eg $\frac{200}{a} + \frac{300}{b} = \frac{500}{a+b}$ followed by $60 \div \frac{500}{a+b}$				
	Allow correct cancellation of 500, 300 and 200 at any stage of the working				